Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(24)2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38138450

RESUMO

The adulteration of olive oil is a crucial matter for food safety authorities, global organizations, and consumers. To guarantee olive oil authenticity, the European Union (EU) has promoted the labeling of olive oils with the indices of Protected Designation of Origin (PDO) and Protected Geographical Identification (PGI), while food security agencies are also interested in newly emerging technologies capable of operating reliably, fast, and in real-time, either in situ or remotely, for quality control. Among the proposed methods, photonic technologies appear to be suitable and promising for dealing with this issue. In this regard, a laser-based technique, namely, Laser-Induced Breakdown Spectroscopy (LIBS), assisted via machine learning tools, is proposed for the real-time detection of olive oil adulteration with lower-quality oils (i.e., pomace, soybean, sunflower, and corn oils). The results of the present work demonstrate the high efficiency and potential of the LIBS technique for the rapid detection of olive oil adulteration and the detection of adulterants.


Assuntos
Contaminação de Alimentos , Inocuidade dos Alimentos , Azeite de Oliva/química , Análise Espectral/métodos , Contaminação de Alimentos/análise , Lasers , Óleos de Plantas/análise
2.
Molecules ; 26(16)2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34443568

RESUMO

Laser-Induced Breakdown Spectroscopy (LIBS), having reached a level of maturity during the last few years, is generally considered as a very powerful and efficient analytical tool, and it has been proposed for a broad range of applications, extending from space exploration down to terrestrial applications, from cultural heritage to food science and security. Over the last decade, there has been a rapidly growing sub-field concerning the application of LIBS for food analysis, safety, and security, which along with the implementation of machine learning and chemometric algorithms opens new perspectives and possibilities. The present review intends to provide a short overview of the current state-of-the-art research activities concerning the application of LIBS for the analysis of foodstuffs, with the emphasis given to olive oil, honey, and milk.


Assuntos
Produtos Biológicos/química , Análise de Alimentos/métodos , Mel/análise , Lasers , Leite/química , Azeite de Oliva/química , Análise Espectral , Animais
3.
Sci Rep ; 11(1): 5360, 2021 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33686131

RESUMO

Olive oil is a basic element of the Mediterranean diet and a key product for the economies of the Mediterranean countries. Thus, there is an added incentive in the olive oil business for fraud through practices like adulteration and mislabeling. In the present work, Laser Induced Breakdown Spectroscopy (LIBS) assisted by machine learning is used for the classification of 139 virgin olive oils in terms of their geographical origin. The LIBS spectra of these olive oil samples were used to train different machine learning algorithms, namely LDA, ERTC, RFC, XGBoost, and to assess their classification performance. In addition, the variable importance of the spectral features was calculated, for the identification of the most important ones for the classification performance and to reduce their number for the algorithmic training. The algorithmic training was evaluated and tested by means of classification reports, confusion matrices and by external validation procedure as well. The present results demonstrate that machine learning aided LIBS can be a powerful and efficient tool for the rapid authentication of the geographic origin of virgin olive oil.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA